TruSeq[®] Small RNA Workflow on the MiniSeq[™] System

Illumina Custom Protocol

This checklist supports the following workflow choices.

Sequencing Instrument:	MiniSeq System
Setup Option	Local Run Manager
Library Preparation Kit:	TruSeq Small RNA Library Prep
Indexing:	Single Indexing
Reagent Kits:	MiniSeq Kit
Analysis Workflow:	Small RNA
Analysis Software:	Local Run Manager

MiniSeq sequencing using TruSeq Small RNA libraries

Set Run Parameters

- \Box 1 Log in to Local Run Manager.
- 2 Click Create Run, and select Small RNA.
- Enter a run name that identifies the run. 3
- \Box 4 [Optional] Enter a run description.
- $\Box 5$ Click 1 to specify a single-indexed run.
- $\Box 6$ Enter the number of cycles for the run.
- \Box 7 Select a reference genome from the Genome Folder drop-down list.
- $\square 8$ Enter a unique sample ID.
- \Box 9 [Optional] Enter a sample description.
- \Box 10 Select an Index 1 adapter.
- □11 Click Save Run.

Ligate Adapters

- \Box 1 Combine the following volumes in a 200 µl PCR tube on ice:
 - RA3 (1 μl)
 - \blacktriangleright 1 µg total RNA in nuclease-free water (5 µl)
- \Box 2 Pipette to mix, and then centrifuge briefly.
- \Box 3 Place on the thermal cycler.
- Incubate at 70°C for 2 minutes. $\Box 4$
- $\Box 5$ Remove from the thermal cycler and place on ice.
- $\Box 6$ Combine the following volumes in a new 200 µl PCR tube on ice. Multiply each volume by the number of samples. Make 10% extra reagent for multiple samples.
 - HML (2 μl)
 - RNase Inhibitor (1 μl)
 - T4 RNA Ligase 2, Deletion Mutant (1 μl)
- \Box 7 Pipette to mix, and then centrifuge briefly.
- $\square 8$ Add 4 µl to the RA3/total RNA mixture.
- \Box 9 Pipette to mix.
- $\Box 10$ Place on the thermal cycler.
- \Box 11 Incubate at 28°C for 1 hour.
- \Box 12 Add 1 µl STP and pipette to mix.
- □13 Continue incubating at 28°C for 15 minutes.
- \Box 14 Remove from the thermal cycler and place on ice.
- \Box 15 Add 1.1 × N µl RA5 to a 200 µl PCR tube.
- \Box 16 Place on the thermal cycler.
- \Box 17 Incubate at 70°C for 2 minutes.
- \Box 18 Remove from the thermal cycler and place on ice.
- \Box 19 Add 1.1 × N µl 10mM ATP to the RA5.
- \Box 20 Pipette to mix.
- \square 21 Add 1.1 × N µl T4 RNA Ligase to the RA5/ATP mixture.
- \Box 22 Pipette to mix.
- \Box 23 Add 3 µl to the RA3 mixture.
- \Box 24 Pipette to mix.

Illumina Custom Protocol

 \Box 25 Place on the preheated thermal cycler.

- \Box 26 Incubate at 28°C for 1 hour.
- \Box 27 Remove from the thermal cycler and place on ice.

Reverse Transcribe and Amplify Libraries

- □1 Combine the following volumes in the 12.5 mM dNTP Mix tube to dilute to 12.mM. Multiply each volume by the number of samples. Prepare 10% extra reagent for multiple libraries.
 - 25 mM dNTP Mix (0.5 μl)
 - Ultrapure water (0.5 μl)
- \Box 2 Pipette to mix, and then centrifuge briefly.
- \Box 3 Set aside on ice.
- \Box 4 Add 6 µl each RNA library to a 200 µl PCR tube.
- $\Box 5$ Add 1 µl RNA RT Primer to the RNA.
- $\Box 6$ Pipette to mix, and then centrifuge briefly.
- $\Box 7$ Place on the thermal cycler.
- $\square 8$ Incubate at 70°C for 2 minutes.
- $\Box 9$ Remove from the thermal cycler and place on ice.
- \Box 10 Combine the following volumes in a 200 µl PCR tube on ice. Multiply each volume by the number of libraries. Make 10% extra reagent for multiple libraries.
 - ▶ 5X First Strand Buffer (2 μl)
 - 12.5 mM dNTP Mix (0.5 μl)
 - 100 mM DTT (1 μl)
 - RNase Inhibitor (1 μl)
 - SuperScript II Reverse Transcriptase (1 μl)
- \Box 11 Pipette to mix, and then centrifuge briefly.
- \Box 12 Add 5.5 μl to the RNA/primer mix.
- \Box 13 Pipette to mix, and then centrifuge briefly.
- \Box 14 Incubate at 50°C for 1 hour.
- \Box 15 Remove from the thermal cycler and place on ice.
- \Box 16 Combine the following reagents in a 200 µl PCR tube on ice. Multiply each volume by the number of libraries. Make 10% extra reagent for multiple libraries with the same index.
 - Ultrapure water (8.5 μl)

- PML (25 μl)
- RP1 (2 μl)
- RPIX (2 μl)
- \Box 17 Pipette to mix, and then centrifuge briefly.
- \Box 18 Place on ice.
- 19 Add 37.5 μl PCR master mix to the adapterligated RNA mixture.
- \Box 20 Pipette to mix, and then centrifuge briefly.
- \Box 21 Place on ice.
- \Box 22 Place on the thermal cycler.
- □23 Incubate using the following program on the thermal cycler:
 - Choose the preheat lid option and set to 100°C.
 - ▶ 98°C for 30 seconds
 - ▶ 11 cycles of:
 - ▶98°C for 10 seconds
 - ▶ 60°C for 30 seconds
 - ▶72°C for 15 seconds
 - ▶ 72°C for 10 minutes
 - 4°C hold
- □24 Run each library on a High Sensitivity DNA chip.
 - SAFE STOPPING POINT

If you are stopping, cap the tube and store at -25° C to -15° C for up to 7 days.

Illumina Custom Protocol

Purify cDNA Construct

- \Box 1 Combine the following volumes in the 0.1X Pellet Paint tube. Multiply each volume by the number of libraries. Make 10% extra reagent for multiple libraries.
 - 1X Pellet Paint NF Co-Precipitant (0.2 μl)
 - ▶ Ultrapure water (1.8 µl)
- \Box 2 Pipette to mix, and then centrifuge briefly.
- \square 3 Combine 2 µl CRL and 2 µl DNA loading dye in a 1.5 ml microcentrifuge tube.
- $\Box 4$ Pipette to mix.
- \Box 5 Combine 1 µl HRL and 1 µl DNA loading dye in a 1.5 ml microcentrifuge tube.
- $\Box 6$ Pipette to mix.
- $\Box 7$ DNA Loading Dye in a 1.5 ml microcentrifuge tube.
- $\square 8$ Pipette to mix.
- \Box 9 Load 2 gel lanes with 2 µl CRL/loading dye mixture.
- \Box 10 Load 1 gel lane with 2 µl HRL/loading dye mixture.
- \Box 11 Load 2 gel lanes with 25 µl each of amplified cDNA construct/loading dye mixture.
- \Box 12 Run the gel for 60 minutes at 145 V or until the blue front dye leaves the gel.
- \Box 13 Remove the gel from the unit.
- \Box 14 Open the cassette and stain the gel with ethidium bromide for 2–3 minutes.
- \Box 15 Place the gel breaker tube into a 2 ml microcentrifuge tube.
- \Box 16 View the gel on a Dark Reader transilluminator or a UV transilluminator.
- \Box 17 Using a razor blade, cut out the bands from the 2 lanes that correspond to the adapter-ligated

- constructs derived from the 22 nt and 30 nt small RNA fragments.
- \Box 18 Place the band into the 0.5 ml gel breaker tube.
- \Box 19 Centrifuge the nested tubes at 20,000 × g for 2 minutes.
- \Box 20 If you are concentrating the final library, skip the 2 next 4 steps and proceed to adding 300 µl Ultrapure Water to gel debris.
- \Box 21 Add 200 µl ultrapure water to the gel debris.
- \square 22 Rotate for at least 2 hours.
- \Box 23 Transfer the eluate and gel debris to the top of a 5 µm filter.
- \Box 24 Centrifuge at 10 seconds at 600 × g.
- \Box 25 Add 300 µl ultrapure water to the gel debris.
- \square 26 Rotate for at least 2 hours.
- Combine all amplified cDNA construct and 10 μ l \Box 27 Transfer the eluate and gel debris to the top of a 5 µm filter.
 - \Box 28 Centrifuge at 600 × g for 10 seconds, and then discard the filter.
 - \square 29 Add the following volumes to the eluate:
 - Glycogen (2 µl)
 - 3M NaOAc (30 µl)
 - [Optional] 0.1X Pellet Paint (2 µl)
 - 100% ethanol (2 μl)
 - \Box 30 Centrifuge at 20,000 × g at 20 minutes at 4°C.
 - □31 Remove and discard the supernatant. Leave the pellet intact.
 - \Box 32 If the pellet becomes loose, centrifuge at $20,000 \times g$ for 2 minutes.
 - \square 33 Wash the pellet with 500 µl 70% ethanol.
 - \Box 34 Centrifuge at 20,000 × g for 2 minutes.
 - □35 Remove and discard the supernatant. Leave the pellet intact.
 - \Box 36 With the lid open, place the tube in a 37°C heat block until the pellet is dry.
 - \Box 37 Resuspend the pellet in 10 µl 10 mM Tris-HC1, pH 8.5.

Check Libraries

- □1 Load 1 µl resuspended construct on an Agilent Technologies 2100 Bioanalyzer using a DNAspecific chip.
 - Check the size, purity, and concentration of the library.

Illumina Custom Protocol

Normalize Libraries

- □1 Normalize library concentration to 2 nM using Tris-HCl 10 mM, pH 8.5.
- □ 2 For storage, add Tween 20 for a final concentration of 0.1% Tween 20.

SAFE STOPPING POINT

If you are stopping, cap the tube and store at -25°C to -15°C for up to 7 days.

Prepare Consumables

- □1 Remove the reagent cartridge from -25°C to -15°C storage.
- □ 2 Thaw reagents in a room temperature water bath for 90 minutes.
- \Box 3 Invert the cartridge 5 times to mix reagents.
- $\Box 4$ Gently tap on the bench to reduce air bubbles.
- □5 Remove a new flow cell package from 2°C to 8°C storage.
- □6 Set the unopened flow cell package aside at room temperature for 30 minutes.
- \Box 7 Remove the flow cell from the foil package and flow cell container.
- $\square 8$ Clean the glass surface of the flow cell with a lint-free alcohol wipe.
- \Box 9 Dry with a lint-free lens cleaning tissue.

Denature, Dilute, and Load Libraries

- $\Box 1$ Dilute 100 μl 1 N NaOH to 1 ml 0.1 N NaOH.
- $\Box 2$ Invert the tube several times to mix.
- □ 3 Thaw the Hybridization Buffer at room temperature.
- $\Box 4$ Vortex briefly before use.
- $\Box 5$ Thaw the RSB at room temperature.
- $\square 6$ Transfer 50 µl of the 2 nM library pool to a new microcentrifuge tube.
- \Box 7 Add 50 µl RSB to dilute to 1 nM.
- $\square 8$ Vortex briefly and then centrifuge at $280 \times g$ for 1 minute.
- \Box 9 Combine 5 µl library with 5 µl 0.1 N NaOH.
- \Box 10 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- \Box 11 Incubate at room temperature for 5 minutes.
- □12 Add 5 µl 200 mM Tris-HCl, pH 7.0.
- \Box 13 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- $\Box 14\,$ Add 985 μl of prechilled Hybridization Buffer.
- \Box 15 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- $\Box 16\,$ Transfer 180 μl library to a new microcentrifuge tube.
- $\Box 17\,$ Add 320 μl prechilled Hybridization Buffer.
- \Box 18 Vortex briefly and then centrifuge at 280 × g for 1 minute.
- □19 [Optional] Denature and dilute a PhiX control to 1.8 pM and a 1% spike-in to the final library.
- □20 Clean the foil seal covering reservoir **#16** using a low-lint tissue.
- \Box 21 Pierce the seal with a clean 1 ml pipette tip.
- \Box 22 Add 500 μl prepared libraries into reservoir **#16**.

Perform a Sequencing Run

- $\Box 1$ From the Home screen, select **Sequence**.
- \Box 2 Enter your user name and password.
- □ 3 Select Next.
- $\Box 4$ Select a run name from the list of available runs.
- □5 Select Next.
- $\Box 6$ Open the flow cell compartment door.
- \Box 7 Press the release button to the right of the flow cell latch.
- $\square 8$ Place the flow cell on the flow cell stage over the alignment pins.
- \Box 9 Close the flow cell latch to secure the flow cell.
- $\Box 10\,$ Close the flow cell compartment door.
- $\Box 11\,$ Open the reagent compartment door.
- □12 Slide the reagent cartridge into the reagent compartment until the cartridge stops.
- □13 Remove the spent reagents bottle from the compartment.
- □14 Discard the contents and slide the empty spent reagents bottle into the compartment.
- \Box 15 Close the compartment door and select **Next**.
- \Box 16 Confirm run parameters.
- □17 Select Next.
- □18 When the automated check is complete, select **Start**.
- □19 Monitor run progress, intensities, and quality scores as metrics appear on the screen.

View Analysis Results

- □1 From the Local Run Manager dashboard, click the run name.
- \Box 2 From the Run Overview tab, review the sequencing run metrics.
- □3 [Optional] Click the **Copy to Clipboard** [•] icon for access to the output run folder.
- □4 Click the Sequencing Information tab to review run parameters and consumables information.
- □5 Click the Samples and Results tab to view the analysis report.
- □6 [Optional] Click the **Copy to Clipboard** [■] icon for access to the Analysis folder.